Generating dithering noise for maximum likelihood estimation from quantized data
نویسندگان
چکیده
The Quantization Theorem I (QT I) implies that the likelihood function can be reconstructed from quantized sensor observations, given that appropriate dithering noise is added before quantization. We present constructive algorithms to generate such dithering noise. The application to maximum likelihood estimation (mle) is studied in particular. In short, dithering has the same role for amplitude quantization as an anti-alias filter has for sampling, in that it enables perfect reconstruction of the dithered but unquantized signal’s likelihood function. Without dithering, the likelihood function suffers from a kind of aliasing expressed as a counterpart to Poisson’s summation formula which makes the exact mle intractable to compute. With dithering, it is demonstrated that standard mle algorithms can be re-used on a smoothed likelihood function of the original signal, and statistically efficiency is obtained. The implication of dithering to the Cramér-Rao Lower Bound (CRLB) is studied, and illustrative examples are provided.
منابع مشابه
Statistical results for system identification based on quantized observations
System identification based on quantized observations requires either approximations of the quantization noise, leading to suboptimal algorithms, or dedicated algorithms taylored to the quantization noise properties. This contribution studies fundamental issues in estimation that relate directly to the core methods in system identification. As a first contribution, results from statistical quan...
متن کاملHyperbolic Cosine Log-Logistic Distribution and Estimation of Its Parameters by Using Maximum Likelihood Bayesian and Bootstrap Methods
In this paper, a new probability distribution, based on the family of hyperbolic cosine distributions is proposed and its various statistical and reliability characteristics are investigated. The new category of HCF distributions is obtained by combining a baseline F distribution with the hyperbolic cosine function. Based on the base log-logistics distribution, we introduce a new di...
متن کاملRobust distributed maximum likelihood estimation with dependent quantized data
In this paper, distributed maximum likelihood estimation (MLE) with quantized data is considered under the assumption that the structure of the joint probability density function (pdf) is known, but it contains unknown deterministic parameters. The parameters may include different vector parameters corresponding to marginal pdfs and parameters that describe dependence of observations across sen...
متن کاملMaximum Likelihood Signal Amplitude Estimation Based on Permuted Blocks of Differently Binary Quantized Observations of a Signal in Noise
Parameter estimation based on binary quantized observations is considered given the estimation system does not know which of a set of quantizers was used, without replacement, for each block of observations. Thus the estimation system receives permutated blocks of quantized samples of a signal in noise with unknown signal amplitude. Maximum likelihood (ML) estimators are utilized to estimate bo...
متن کاملModified Maximum Likelihood Estimation in First-Order Autoregressive Moving Average Models with some Non-Normal Residuals
When modeling time series data using autoregressive-moving average processes, it is a common practice to presume that the residuals are normally distributed. However, sometimes we encounter non-normal residuals and asymmetry of data marginal distribution. Despite widespread use of pure autoregressive processes for modeling non-normal time series, the autoregressive-moving average models have le...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Automatica
دوره 49 شماره
صفحات -
تاریخ انتشار 2013